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Covariates that affect the outcome of a disease are often incorporated into the design
and analysisof clinical trials. This servestwo main purposes. 1. To improve the credibility
of the trial results by demonstrating that any observed treatment effect is not accounted
for by an imbalance in patient characteristics, and 2. To improve statistical efficiency.
In this paper, we review procedures for the adjustment of treatment effectsfor theinfluence
of covariates and discuss some statistical and regulatory issues on the applications of

these procedures.
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INTRODUCTION

RANDOMIZATION IS A cornerstone for
clinical trials comparing treatments. Ran-
domization prevents biased all ocation of sub-
jects to treatment groups, and provides the
foundation of statistical tests. In theory, ran-
domization will ensure that treatment groups
will be balanced for all covariates, including
patient and disease characteristics such as
age and extent of disease. In practice, how-
ever, with simple randomization someimpor-
tant covariates may not be balanced at the
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end of the study, especially when the sample
size of the tria is small. If these unbalanced
covariates are strongly correlated with the
study outcomes, their presence may make it
difficult to interpret the results of statistical
tests for the treatment effect. The credibility
of the study is also often under question.
There are two basic categories of proce-
duresthat can be used to adjust for the poten-
tial or actual imbalances between treatment
groups. The first are intended to prevent im-
balancesin the design stage of thetria. Such
methods, stratification and minimization, for
example, are used to force treatment groups
to be balanced on important and prespecified
covariates. These procedures are often called
“preadjustment” procedures. Another cate-
gory of procedures adjusts covariate imbal-
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ance in the analysis stage of the trial. Treat-
ment effect is compared between treatment
groups by some (adjusted) statistical tests
that take into account the imbalances in im-
portant covariates. The procedures in this
category are often termed “ postadjustment”
procedures. In many clinical trials, both pre-
and post-adjustment methods are used simul-
taneoudly.

There have been many discussions in the
literature concerning the advisability of ad-
justing for covariates and on the selection of
the adjustment procedure. Since adjustment
has a large impact on the conduct of trias
and on the interpretation of tria results, the
pros and cons of each procedure should be
discussed before its implementation. The
purpose of this paper is to examine how
choices among these possible approaches can
affect the success of clinical trialsin achiev-
ing the goal of providing statistically con-
vincing and credible results in a regulatory
setting. We will first discuss the impact of
the choice of preadjustment procedures on
credibility and efficiency based on literature
review and our simulation studies. The post-
adjustment methods are then discussed based
on the review of literature and our experi-
ences. Recently, the International Conference
on Harmonization (ICH) published guidance
on the statistical methods in clinical trials
(1), which will be referred to as the ICH
guideline in this paper. The requirements
from this guideline are also discussed.

PREADJUSTMENT PROCEDURES

Preadjustment refers to those procedures
used at the design stage of a clinica trial
and when patients are randomized. Stratified
randomization (or stratification for short) is
the simplest and most widely used method
to adjust for potential covariate imbalances.
With this method, several important covari-
ates or “stratification factors,” which have
potentially strong relationships with the out-
comes of the study, are identified before the
study starts. The procedure achieves balance
by blocking randomized allocation withinin-
dividual strata defined by the categories of
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covariates of interest. As pointed out by Ker-
nan et a. (2), stratification can ensure that
treatment groups are balanced in terms of the
important covariates that are stratified. There-
fore, it would assist the interpretation of sta-
tistical tests for small size trials with poten-
tial imbalances of important covariates and
facilitate the subgroup and interim analyses
for large trials. When the factors chosen are
truly related to the outcome assessed, asdem-
onstrated in a simulation study by Feinstein
and Landis, dtratification can also reduce
type |l error. Byar and Green (3) showed that
the impact of stratification could be directly
calculated and demonstrated that stratified
alocation would reduce both type | and type
Il errors, thus increasing efficiency. They
also showed that this gain in efficiency is
realized entirely as increased power if the
same covariates are taken into account in
theanalysis. Stratification can, however, deal
only with alimited number of covariates and
reduces to simple randomization as the num-
ber of strataincreases (4) because of incom-
plete filling of blocks within strata. Byar et
al. (5) and the ICH guideline (1) suggest that
it is seldom advisable to have more than three
or four stratainaclinical trial. The maximum
number of strata depends on the total number
of patients in the trial, the expected number
who will be in each stratum, and the impor-
tance of stratification factors. Hallstrom and
Davis (6) recommend that, with stratifica-
tion, the number of strata should be less than
N/B, where N is the total sample size and B
is the block size. When there is an interim
analysis planned, Kernan et a. (2) recom-
mend that the number of strata should be
less than n/(B + 4), where n is the patients
accrued at the time of interim analysis. With-
out blocking the number of strata should be
between n/50 and n/100. To reduce the num-
ber of strata, only those covariates that have
a known and important effect on outcome
risk or treatment responsiveness should be
considered. Another way to reduce the num-
ber of strataisto use a multivariate index to
define the strata. For example, in a clinical
trial that compared a new chemotherapy to a
standard therapy in women with early breast
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cancer (see the description in the next section),
we combined two important biological prog-
nostic factors: the values of estrogen and pro-
gesterone receptors as one factor, and reduced
the total number of strata from 54 to 18.

In practice, however, we may have to in-
clude alarge number of strata. For multicen-
ter trials, the ICH guideline (1) recommends
that randomization procedures should be or-
ganized centrally and center should be astrat-
ification factor. There are currently more
than 60 member institutions in our group. If
only half of these ingtitutions participate in
a given clinical tria, for atrial of moderate
size, the number of strata needed will easily
exceed the number in the guideline set by
Kernan et al. (2). Dynamic allocation was
developed to deal with this type of problem.
A frequently employed form of dynamic a-
location is minimization. Taves (7) first pro-
posed this method, which minimizes differ-
ences between the groups. Pocock and Simon
(8) presented a general method which com-
bines elements of minimization and random-
ization to balance treatment groups with re-
gard to prognostic factors. It was discussed
by White and Freedman (9) with a goa to
simplify itsuse. Several studies have demon-
strated the ability of minimization to achieve
balance. Pocock and Simon (8) showed that
minimization may be more effective than
stratification when trials are small (<100 pa-
tients) and there are many (>3) covariates.
In a recent article, Therneau (10) showed
that minimization outperformed stratification
under a wide range of plausible conditions
with respect to achieving overall balance on
the distribution of covariates between treat-
ment groups. He concludes that minimization
can accommodate a large number of factors
(10-20) without difficulty but stratification
begins to fail if the total number of distinct
combinations of factor levels is greater than
approximately N/2, where N isthetotal sam-
ple size.

Much less attention, however, has been
paid to the impact of dynamic alocation on
statistical efficiency. Birkett (11) examined
the comparative effects of stratification and
minimization on type | and Il errors. In a
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series of simulations, he found that minimi-
zation performed at least aswell as stratifica-
tion, but pointed out that his conclusions
were limited to the condition he examined,
that is, normally distributed and independent
variables. Because this area has not been
thoroughly explored (2,11), we will describe
herein more detail the results of asimulation
study we carried out but reported only in
abstract form.

This study employed a data set of actual
patients with known covariates and out-
comes. In the simulation, patients were ran-
domly selected (with replacement), and then
classified according to their covariate catego-
ries. Patients were then allocated by one of
the techniques described below to treatment
or control groups. The process was repeated
until a prespecified number of patients had
been entered. The results of the trial were
then tabulated according to treatment group
and patient outcomes. In null trials the out-
come was that known to have occurred.
When an effective treatment was simulated
arandom 30% of the patientsin the treatment
group who had died were considered to have
lived. Each trial was then analyzed by calcu-
lating either an ordinary or Mantel-Haenszel
chi sguare statistic. In the latter case, 2 x 2
outcome versus treatment tables were kept
for each subgroup defined by the covariates
of interest. Finally, this process was repeated
1000 times, and the number of times the chi
sguare statistic exceeded the critical value of
3.84 was counted for each combination of
trial size, set of covariates, and allocation
technique. These percentages represent the
observed alpha and beta errors in the null
and effective treatment trials, respectively.

The results obtained with three allocation
techniques are reported here:

1. Random allocation with blocking,
2. Stratification, and
3. Minimization.

Random allocation was achieved by alternat-
ing each randomly selected patient between
treatment and control groups. Thus, the block
sizewastwo. For stratification, patientswere
first classified by their particular combina-
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tion of covariates. Then within each of these
strata they were assigned aternatively to
treatment and control groups. Minimization
was done according to the method described
by Taves (7). Thisinvolvescalculating, at the
time of each new allocation, the comparative
degree of imbalance that would occur if the
patient were assigned either to the treatment
or control groups. Imbalance is quantified by
determining for each covariate category the
absolute difference in number of patients as-
signed to the treatment and control groups
and then summing these differences over all
categories. The allocation that produces the
least imbalance is then chosen. In case of
ties, treatment assignment is random.

Two sets of actual patient data were used
in this study. The first was abstracted from
the records of 1109 patients with breast can-
cer who presented to two clinics of the On-
tario Cancer Treatment and Research Foun-
dation between 1961 and 1970. Methods of
data extraction and coding have been de-
scribed previously (12). For purposes of an
analysis not reported here, these patients
wererandomly divided into two groups num-
bering 547 and 559, respectively. The results
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presented here pertain to the second group.
The second data set was derived by similar
techniques from the records of 651 patients
with lung cancer first seen between 1965 and
1974 (13). Tables 1 and 2 list the covariates
studied in each patient group, and five-year
and six-month survivals by covariate cate-
gory. Except for agein breast cancer patients,
the covariates were picked because of their
obviouseffect on outcome. Agewasincluded
becauseit is often used as a basis for stratifi-
cation in clinical trials in breast cancer.

Table 3 presents the results obtained in
null trials with breast cancer patients. The
trial sizes listed in the first column refer to
the total number of patients in each of the
trials. For each tria size, four allocation tech-
niques were used:

1. Simple random allocation (SRA),

2. Stratification on the first two variablesin
Table 1 (12 strata),

3. Stratification on all five variablesin Table
1 (96 strata), and

4. Minimization on al five factors.

The numbers in the body of the table are the
frequency out of 100 that a null trial had a

TABLE 1
Prognostic Factors in Breast Cancer Patients
No % No

Variable Recurrence Recurrence Recurrence
Age

<50 124 101 55

>50 171 143 52
Stage

I 217 117 65

1] 58 68 46

[} 20 79 20
Auxometry

not bad 284 245 54

bad 11 19 37
Pathologic Node Involvement

None 174 53 77

“involved” 10 33 23

1-3 81 74 36

>4 30 104 22
Pathology

Adenocarcinoma 252 239 51

Other 43 25 63
TOTAL 295 264 53
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TABLE 2
Prognostic Factors in
Lung Cancer Patients

Variable Alive Dead % Alive
Stage
| 147 54 73
Il 95 108 47
11 52 177 23
Performance
Status
asymptomatic 38 10 79
symptomatic 221 232 49
bedridden 35 97 26
Weight Loss
<10 Ibs 224 194 54
11-20 Ibs 47 86 35
>20 Ibs 23 59 28
Clinical Group
(Feinstein)
asymptomatic 40 13 75
pulmonic 122 72 63
systemic 97 149 39
metastatic 35 105 25
TOTAL 294 339 46

positive result; that is, the chi square value
exceeded 3.84. In brackets are confidence
limits cal cul ated by the usual method for pro-
portions. Predicted values were calculated
from the formula of Green and Byar. All chi
squares in the null trials were calculated by
the ordinary chi square since the use of the
Mantel-Haenszel chi square in effect resets
the alpha error to the nominal value of 0.05.
Table 4 gives the results of effective treat-
ment trials. The overall format of this table
isthe same as Table 3. Two methods of analy-
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sis, however, were used. The results with the
first, the ordinary chi square, are shown in
column 1. The remaining columns display
results of Mantel-Haenszel analyses. In each
case the strata used in analysis were those
created by the factors on which the corre-
sponding allocation was based.

In generdl, the results illustrated by these
tables are those which might be expected.
Allocation on the basis of covariates reduces
alpha errors, but the inclusion of too many
covariates produces poorer results in small
trials. Power also improved by considering
covariates and, as expected, the best results
are obtained when stratified allocation and
analysis are both used (this will be discussed
again in the next section). Overstratification
appears to be even more of a problem, how-
ever, when stratified analysisis used. An un-
expected result of these simulations was the
fact that minimization was consistently infe-
rior to stratification in reducing alpha and
betaerrors. Infact, it wasnearly equivalent to
random allocation in this regard. The results
obtained with lung cancer patients are pre-
sented in Tables 5 and 6. These tables are in
the same format as Tables 3 and 4 except
that 2, 3, and 4 variables (corresponding to
9, 27, and 108 strata, respectively) were used
for alocation and analysis. In this data set
minimization performed fairly effectively in
reducing alpha errors. In moderate sized tri-
als, however, it was|ess efficient than stratifi-
cation in improving power.

The explanation of these results lies in
the different types of balance achieved by

TABLE 3
Type | Error (Breast Cancer Data)

Allocation Technique

Trial Size SRA 12 Strata 96 Strata Minimization
50 .060 .031 .043 .044
(.045, .075)  (.020, .042) (.030,.056)  (.031, .057)
200 .052 .027 .024 .038
(.038,.066) (.017,.037) (.014,.033)  (.026, .050)
400 .052 .020 .026 .042
(.045, .075) (.011, .029) (.016, .036) (.030, .054)
PREDICTED .050 .023 .016
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stratification and minimization. Stratification
isaimed at achieving balance between treat-
ment groups within each cell of the multiple
contingency table created by the categories
of the covariates incorporated in the alloca
tion scheme. Minimization, however, bal-
ances only with the marginal distribution of
these categories. This has been recognized
for some time and has been demonstrated in
previous simulation studies (14) and con-
firmed by usin separate analyses. The conse-
guences of the failure of minimization to bal-
ance within cells, however, have asfar aswe
are able to determine neither been explicitly
stated nor empirically demonstrated.

With regard to reduction in apha error,
the consequences of failure to achieve bal-
ance within individual strata (cells) depends
upon whether the prognosis for a group can
be predicted on the basis of the overall distri-
bution of covariate categories within that
group, or whether its exact makeup in terms
of individuals with particular combinations
of covariate categories needs to be known.
In the first case, balance on the marginal
distribution of covariates at the time of allo-
cation will be sufficient to achieve atendency
to comparability in outcome expectations in
treatment groups. In the second, balance
within strata will be essential to meet the
same goal. Stated another way, marginal bal-
ance can be expected to be sufficient when
the effects of prognostic factors do not inter-
act. To the extent that interactions between
prognostic factors do exist, however, balance
within strata will be necessary to reduce
alpha errors.
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These expectations were confirmed in our
study. Separate analyses indicated the pres-
ence of substantial interactions in the breast
data. This would explain the relatively poor
performance of minimization. On the other
hand, minimal evidence for interaction was
found in the lung patients. Further, in a data
set of simulated patients specifically created
in such away that the effects of the prognos-
tic factors were independent of one another,
minimization performed aswell as stratifica-
tion. This result is in accord with Birkett's
(11). The situation with beta errors is more
complex in that the results depend upon the
method used in analysis. When a nonstra-
tified analytic technique is used, the same
tendencies are to be expected as with alpha
errors, and thiswas found in a series of simu-
lations not presented here. If a dratified
method of analysisis used, however, for ex-
ample, the Mantel-Haenszel chi sguare, its
power will be dependent upon how evenly
treatment groups are distributed within strata.
Thus, even with independent covariates, a
technique which achieves marginal but not
stratum balance will produce a lesser im-
provement in power than one which balances
on strata. In summary, minimization pro-
duces marginal balance and thus enhances
credibility. Whether minimization increases
precision depends on the presence or absence
of covariate interaction.

Signorini et al. (15) argued that, sincewith
minimization specific strata may be severely
unbalanced, even though overall tria and
marginal totals for each stratification vari-
able are balanced, the subgroup analysis will

TABLE 4
Power (Breast Cancer Data)

Allocation Technique

SRA 12 96
Trial Size SRA (12 Strata) Strata Strata Minimization

50 .20 .19 .16 .16 .13
(18,.22)  (.16,.21)  (.14,.18) (.14,.18) (.11, .15)

200 .56 .59 .62 .56 .53
(53,.59) (.56,.62) (.59,.65) (.53,.59) (.50, .56)

400 .83 .88 91 .89 .84
(81,.85)  (.86,.90)  (.89,.93) (.87,.91) (.82, .86)
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TABLE 5
Type | Error (Lung Cancer Data)

Allocation Technique

Minimization

Trial Size SRA 9 Strata 27 Strata 108 Strata 3 Variables 4 Variables
50 .052 .032 .029 .029 .044 .041
(.038, .066) (.021, .043) (.018, .039) (.018,.039) (.031, .057) (.029, .053)
200 .051 .032 .027 .028 .022 .033
(.037, .065) (.021, .043) (.017,.037) (.018,.038) (.013,.031) (.022,.044)
400 .073 .021 .025 .021 .036 .022
(.057,.089) (.012,.030) (.015, .035) (.012,.030) (.024,.048) (.013, .031)
PREDICTED .050 .029 .023 .020

be difficult sinceit is possible a stratum may
contain only one treatment (for example,
three consecutive patients in a center receive
the same treatment). They proposed a new
dynamic allocation method as an alternative
to minimization. With thismethod, the covar-
iates are divided into different levels. Define
D; = |T, - Ci| as the difference of numbers
allocated to treatment and control therapies
at level i. Define a critical value d, for each
level. If level i is the lowest level such that
D, = d, force the alocation of the next pa
tients so as to reduce D,. If D;<d; for al i
then randomly allocate the patient. Simula-
tions showed that major imbalances possible
with minimization do not occur with this
method and the potential for selection bias
is also much reduced. But it is not clear how
d; can be objectively determined.

Some authors argued that preadjustment
should be used only for trials of small size
or when there are not too many strata (16,
17). For superiority trials to demonstrate the
difference between treatments, Kernan et al.
(2) recommend that stratification only be
used for trials with less than 400 patients or
large trials when interim anayses are
planned with less than 400 patients accrued.
But, as pointed out by Brown (18), since one
of the reasons for balancing is to secure a
balance of treatments that will reassure the
readers of the clinical trial reports, including
regulatory reviewers, and to increase the
credibility of the studies, it is important to
achieve balance with regard to the well-ac-
cepted covariates for the disease under the
study. Furthermore, as mentioned before,
Therneau (10) showed that dynamic alloca-

TABLE 6
Power (Lung Cancer Data)

Allocation Technique

Minimization

Trial SRA 9 27 108 3 4
Size SRA (9 Strata) Strata  Strata  Strata Variables Variables
50 .22 .20 .24 .20 15 .16 .13
(.19, .24) (.18,.22) (.21,.27) (.18,.22) (.13,.17) (.14,.18) (.11, .15)
200 .61 .66 71 .70 72 .66 .62
(.53,.64) (.63,.70) (.68,.74) (.67,.73) (.69,.75) (.63,.69) (.59, .65)
400 .88 .93 .95 .93 .95 .92 .93
(.86,.90) (.91,.94) (.94,.96) (.01,.94) (.94,.96) (.90, .94) (.91, .94)
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tion methods can be used to balance trials
with many strata.

From our experienceit seemsthat minimi-
zation or other dynamic allocation proce-
dures are not used as frequently in trials con-
ducted by industry as in trials conducted in
academic settings. One of the reasons may
be that, since, with the dynamic allocation
procedure, there is no master randomization
list generated before the study starts, the ran-
dom assignment with dynamic alocation
may not havethe same operational credibility
as the stratification with blocking. The ICH
guideline (1) discussed specifically the use
of the dynamic allocation procedure and con-
cluded that “the use of a dynamic allocation
procedure may help to achieve baance
across a number of stratification factors si-
multaneously provided that the rest of trial
procedures can be adjusted to accommodate
an approach of this type.” Another reason
may be that mistakes are more likely when
dynamic alocation is used. There are two
potential types of mistakes. The first occurs
when there are errors in the computer pro-
gram for dynamic allocation. This error can
be reduced by vaidating the program
through a dummy data set according to ap-
propriate regulatory guidelines before the
program is first used and then monitoring
the balances of treatment arms every time a
patient is allocated. Another kind of mistake
happenswhen patients are allocated to wrong
strata. For example, in one of our trials in
the treatment of advanced breast cancer, one
stratification factor iswhether the patient had
visceral disease when he/she entered thetrial.
At the time of randomization, based on the
information the investigator had, a patient
was classified as without visceral diseases
and alocated. Later, acareful check of medi-
cal history revealed the patient had visceral
disease. Thus, she had been allocated to the
wrong stratum. Thiskind of mistake can hap-
pen with any preadjustment procedure. To
reduce its occurrence, we recommend having
a clear definition of stratification factors.
Further, the assessment of these factors
should have no difficult measures attached.
A treatment allocation should be given only
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when entry criteria which include the values
of the stratification factors have been con-
firmed (1).

POSTADJUSTMENT PROCEDURES

Although there are dtill controversies on
whether preadjustment procedures should be
used in a controlled clinical trial, it seems
there is agreement that some postadjustment
procedures should be used, especialy if there
are any imbalances on covariates. For agiven
set of preadjusted covariates, eventhough the
stratification or minimization methods will
make the treatment groups comparable in
these variables, the full potentia of pread-
justment will not be realized unless these
stratification factors areincorporated into the
analysis. Simon (4) showed through asimpli-
fied example that pooled analysis combining
comparisons within each stratum may result
in amore powerful significance test than the
analysis without the stratification factors.
Peto et a. (16) proposed that the analysis of
results from trials with stratified randomiza-
tion should take account of the stratification.
Failure to account for stratification in the
analysis will result in an overestimation of
the p-vaues for a difference between end-
point rates in treatment groups. Lachin,
Matts, and Wei (17) also recommended that
a like-stratified analysis should be used if a
stratified randomization is employed. They
concluded that, if there is significant hetero-
geneity in some systematic way among the
patients entering the trial, such as change
over time, ignoring the stratification in the
analysis may substantially distort the size of
the test. For minimization, it was concluded
(12) that the statistical analysis (under the
assumption of a population model) must in-
corporate adjustments for the covariates em-
ployed in the design in order to yield tests
of proper size. Gail (19) pointed out that in
studies with balanced strata, if the data are
pooled so that stratum effects are omitted
from the regression analysis, certain regres-
sion models retain nominal size, including
all Poisson models and al normal models
with known variance. Omitting the stratifica-
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tion variables from logistic analyses follow-
ing a stratified randomization does make
these tests conservative. The ICH guideline
(1) aso agrees that “factors on which ran-
domization has been stratified should be ac-
counted for later in the analysis’ and “in
some instances an adjustment for the influ-
ence of covariates or for subgroup effects is
anintegral part of the analysis plan and hence
should be set out in the protocol.”

Theoretically, adjusting for balanced co-
variates usually results in smaller p-values.
Hauck et al. (20), however, argued that ad-
justing for covariates with actual data does
not always follow this pattern, for any set of
covariates specified will show some depar-
ture from perfect balance. Adjusting for co-
variatesis then a mix of the effects as above
and removal of confounding due to imbal-
ance in those covariates. McHugh and Matts
(21) showed that postadjustment alone is
comparable to stratification with adjusted
analysisin precision for estimating treatment
contrasts when the trial size exceeds 100 pa-
tients. If postadjustment is used, losses in
power and efficiency from failure to stratify
areinsignificant (16,22,23). Asmentionedin
the section above, however, another purpose
of preadjustment isto increase the credibility
of the studies. Therefore, whether or not to
preadjust is not a pure statistical efficiency
issue.

There are several waysto perform postad-
justment. A simple approach is to calculate
the treatment difference within each stratum
and then to calculate a global measure of
treatment effect by combining all the (weight-
ed) differences together. This can be done
using procedures such as the Mantel-Haens-
zel test when event rate is the primary out-
come of the study or stratified log-rank test
when time to an event is the endpoint of the
trial. Another approach isto use a statistical
model to make the adjustment. Logistical re-
gression models are often used to adjust for
covariates when the primary outcome of the
study is event rate, and the Cox proportional
hazards regression model for trials with time
to an event as the endpoint. Lachin, Matts,
and Wei (17) even suggested that if blocking
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is used together with stratification, the test
should employ the proper corresponding per-
mutation variance. When there is a positive
intrablock correlation, which may exist if
thereisany systematic differencein the char-
acteristics of the patients entering the trial,
such asatimetrend (ie, atime heterogeneity)
or adifference among strata (eg, clinical cen-
ter), thetest ignoring blocking will be conser-
vative and less powerful.

The choice of covariates to be adjusted
can be difficult if these covariates are not
prespecified. Beach and Meier (24) showed
this choice may inf luence the conclusions of
the studies. If the choice is l€eft to investiga-
tors after the study has finished, research
conclusions are susceptible to manipulation
and error. Therefore, covariates should be
specified in advance. The ICH guideline
(1) recommends that “pretrial deliberations
should identify those covariates and factors
expected to have an important influence on
the primary variable(s), and should consider
how to account for these in the analysis in
order to improve precision and to compen-
sate for any lack of balance between treat-
ment groups. . . . When the potential value of
an adjustment isin doubt, it isoften advisable
to nominate the unadjusted analysis as the
one for the primary attention, the adjusted
analysis being supportive.” Thisis moreim-
portant if no preadjustment procedure has
been used to alocate patients.

In clinical trias, there are aways some
data missing for some covariates. For the
covariates that are used in the preadjustment,
however, the chance of missing observations
will be very small since the collection of
these observations is part of trial entry re-
quirements. Excluding or including specific
datafrom the analysiswill have someimpact
on the results of the dataanalysis. For regres-
sion analysis, patients with missing observa-
tions on any of the covariatesincluded in the
analysis will usualy be excluded from the
analysis. Thismay introduce serious bias and
change the conclusions of the study. It is
required in the ICH guideline (1) that the set
of subjects whose data are to be included in
the main analyses should be defined in the



520

statistics section of the protocol. An investi-
gation should be made concerning the sensi-
tivity of the results of the analysis to the
method of handling missing values, espe-
cially if the number of missing valuesis sub-
stantial.

There is another problem with model-
based procedures of postadjustments. These
procedures usually require that the assump-
tions underlying these model s be correct. For
example, for the Cox proportional hazards
regression model, the proportional hazards
assumption should be met by the data. Other-
wise, the adjusted estimate of the treatment
effects would be difficult to interpret. Hill
(25) showed that the stratified log-rank test is
asymptotically as efficient as the test arising
from the Cox model if:

1. Thereis no treatment effect,

2. Treatments are balanced by covariates, and

3. The hypothesis underlying the Cox model
are satisfied.

If the proportional hazards model does not
hold for the covariates, the Cox model leads
to abiased estimate of the difference between
two treatments. She concluded that the strati-
fied log-rank test is a robust procedure for
comparing treatments in the presence of co-
variates, whereas the tests based on the Cox
model can give misleading results if the as-
sumptions of the model are false. Some other
regression methods might be used when the
assumptions in some classical regression
models fail. For example, for survival data,
some nonparametric regression model such
as hazards regression models (26), mean ker-
nel regression models (27), regression tree
method (28), or piecewise hazards model
(29) would be used. But these models may
not be as efficient as the classical models
when the model assumptions aretrue. There-
fore, before the data are unblinded, it will be
difficult to determine which models would
be used. If the modelsto be used in the analy-
sis are left unspecified in the protocol or
analysis plan, the risk of data manipulation
will be increased. Even if we can decide
which model will be used, there are still
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many ways covariates could be incorporated
into the model: Should we include only those
related to outcome or should a stepwise pro-
cedure be used? How should covariates be
categorized? The prespecification of these
elements of modeling is important for the
analysis to be credible. The ICH guideline
requires that “the particular statistical model
chosen should reflect the current state of
medical and statistical knowledge about the
variablesto beanalyzed aswell asthe statisti-
cal design of thetrial. All effects to be fitted
in the analysis should be fully specified, and
the manner, if any, in which this set of effects
might be modified in responseto preliminary
results should be explained” (1).

It was mentioned before that the stratifica-
tion can fail if there are too many strata.
Although minimization can be used to bal-
ance many more covariates, when the num-
ber of strataisvery large and the sample size
of the trial is moderate, the results from a
stratified test may not be stable since there
will be very few patients in many strata. For
thisreason, for atrial with center asa stratifi-
cation factor and many centers, sometimes
center isnot included as afactor in the calcu-
lation of stratified tests. Sometimes, we may
want to adjust many other covariatesin addi-
tion to some prespecified stratification fac-
tors. This may make the use of the stratified
test more difficult. Although some (strati-
fied) regression models may be used to han-
die a larger number of covariates, we will
still have to deal with the model assumption
problem underlying this approach. A piece-
wiselinear model was proposed by Akazawa
et al. (29) to adjust for covariates when the
proportional hazards assumption is not true.
To fit a regression model, Harrell, Lee, and
Mark (30) recommended that the number of
terms (which may include interaction terms
between covariates) to be included in the
model should be less than m/10, where m is
the number of patients in the less frequent
outcome categoriesfor thelogistic regression
model and the number of uncensored event
times for the Cox proportional hazards mode!.
Recently, Koch et a. (31), Tangen (32), and
Koch (33) suggested some nonparametric
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methods which can be used to adjust many
covariates but do not involve any further as-
sumptions beyond those of stratified tests.

In clinical trials with a surviva endpoint,
Kaplan-Meier survival curves are often dis-
played to illustrate the difference between
two treatments. The curves from a standard
package do not usually incorporate the effect
of covariant adjustment. Therefore, it may
happen that athough the covariant-adjusted
treatment differenceissignificant, the plotted
survival curves are not separated. This will
affect the dissemination of the results. Sev-
eral methodsfor plotting survival curveswith
adjustment for covariates have been sug-
gested. For example, Makuch (34) presented
amethod based on the Cox proportional haz-
ards model, and Tangen and Koch (33) sug-
gested an adjustment based on their methods
of nonparametric adjustment.

Model-based analysis is still useful since
it can generate hypotheses and identify prog-
nostic factors that illuminate the natural his-
tory of a disease. These factors can then be
used in randomization of further trials. These
analyses should, however, be clearly speci-
fied in the protocol and reported as explor-
atory analyses.

The following example illustrates the
points discussed above. A randomized clini-
cal trial was conducted by our group between
1989 and 1993 to compare an intensive an-
thracycline containing regimen (CEF) with
a standard adjuvant chemotherapy (CMF) in
treating postmenopausal women with early
breast cancer (35). Thistrial was later identi-
fied asthe pivotal trial inan FDA submission.
In this trial, 716 patients were randomized
by using a blocked stratified randomization
procedure with the following three stratifica-
tion factors: Number of positive lymph nodes
(1-3 vs. 4-10 vs. >10), surgery performed
before the treatment (lumpectomy vs. mas-
tectomy), and number of estrogen (ER)/pro-
gesterone (PR) receptors (ER or PR = 10 vs.
both < 10 vs. unknown).

The baseline patient and disease charac-
teristics are presented in Table 7. It has been
noted (36) that while the treatments were
well balanced in terms of three stratification
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TABLE 7
Baseline Characteristics of the
Breast Cancer Trial
CMF CEF

Factor (n =359) (n =351)
Age, years

<29 6 4

30-39 77 86

40-49 215 205

>50 61 56
Nodes positive

1-3 218 215

4-10 117 114

>10 24 22
ER level

<10 100 106

>10 212 206
Surgery

Lumpectomy 176 169

Mastectomy 183 182
Tumor Stage

T1 139 126

T2 175 193

T3 42 25

factors, there were dight imbalances in two
important prognostic factors: age and tumor
stage. Only 23% of the patients in the CEF
group were less than 40 years of age com-
pared with 26% in the CMF group. Twelve
percent of the CMF group had T3 tumor with
only 7% in the CEF group.

Relapse-free survival and overall survival
are the two major efficacy endpoints of this
study. In this paper, we concentrate only on
overall survival. In comparison of overall
survival for patients in two treatment groups,
three tests were performed in our original
analysis: alog-rank test, a stratified log-rank
test adjusting three stratification factors, and
a Cox model adjusted analysis. The p-value
of the log-rank test was 0.11 while the p-
value for the stratified log-rank test was
0.034. In responding to the question whether
the imbalances in age and tumor stage will
have a large impact on the survival results,
another dtratified log-rank test was per-
formed which adjusted for age and tumor
stage plusthree original stratification factors.
The p-value of the second stratified test was
0.028. These results confirmed the impor-
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tance of postadjustment. This example aso
showsthat stratified tests adjusting some im-
portant imbalanced prognostic factors are usu-
dly more powerful than undratified tests,
whether or not these factors are preadjusted.
Thestratified test adjusting factors other than
those used in the preadjustment may not have
the same credibility asthe test adjusting only
stratification factors since the selection of
those factors may be data dependent.

In the Cox regression analysis, a stepwise
selection procedure was first used to identify
factors which are closely related to the sur-
vival. Three factors were identified after the
stepwise selection: number of positive node,
estrogen receptor value, and pathologic tu-
mor stage. One of the stratification factors,
the type of the surgery, was not retained in
the model after the stepwise selection. Since
age was considered an important prognostic
factor, the treatment effect was tested using
the Cox proportional hazards model with
treatment and four other covariates (age plus
three identified through the stepwise proce-
dure). The p-vaue of the Wald test in the
Cox model was 0.17. A test suggested by
Grambsch and Therneau (37) and based on
rescaled Schoenfeld residual swas performed
to assess the proportional hazards assump-
tion in the Cox regression model. The p-
value of the global test was 0.0066. This
implies the proportional hazards assumption
may not hold for these data. Another Cox
regression anaysis was performed to con-
trast the results of thistrial with another trial
performed by another research group. The
covariates collected in both trials were used
to adjust the treatment effect. These variables
are: number of positive nodes, estrogen re-
ceptor value, menopausal status, surgery, and
pathologic tumor stage. Since some patients
with unknown tumor stage were classified as
missing in the second trial, al patients with
unknown tumor stage were deleted in this
Cox regression analysis. The p-value of the
Wald test for the treatment effect wasreduced
t00.021. Theglobal test for proportional haz-
ards assumption is not significant. This con-
firmed the observation made by Akazawa et
a. (29), that Cox regression anaysis with a
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misspecified hazards model may result in a
substantial loss of power. It also shows the
difficulty of using model-based procedures
for postadjustment in a regulatory setting: If
the covariates which will be included in the
analysis and methods of handling missing
values are not prespecified in the protocol or
data analysis plan, it will open the gate for
data manipulation. Even if the covariates are
prespecified, the reliability of the results from
model-based postadjustment will strongly de-
pend on whether the assumptions underlying
the models are met.

CONCLUSIONS

We have reviewed procedures for the adjust-
ment of covariatesin clinical trials. Fromthis
review, the following conclusions would be
made:

1. For preadjustment, stratification can en-
sure balance of treatments when there are
not too many strata. Minimization can
achievebalancefor trialswith alarge num-
ber of strata. But since minimization only
ensures marginal balance, precision isin-
creased only when there is no interaction
between covariates adjusted, and

2. For postadjustment, a stratified test is
more powerful than an unstratified test. It
is also more credible than model-based
adjustment sinceit requires fewer assump-
tions and the covariates to be adjusted are
prespecified and collected more carefully
in the study.
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